
Rend. Sem. Mat. Univ. Pol. Torino
Vol. xx, x (xxxx), 1 – ??

R. Cristoferi∗

CLUSTERING OF BIG DATA: CONSISTENCY OF A
NONLOCAL GINZBURG-LANDAU TYPE MODEL

Abstract. After introducing the main ideas and reviewing some of the literature on the
subject, we consider a discrete non-local variational model for clustering in the context of
soft-classification semi-supervised learning. The functional is inspired by a similar model
studied by Alberti and Bellettini (see [1]) in the context of phase transition for ferromagnetic
materials. A parameter εn controls both the non-local term, as well as the size of the phase
transition layer. We identify the Γ-limit of the variational functional as εn → 0. In the ma-
chine learning community, this is known as the study of the consistency of the model. The
limiting functional is given by a fidelity term plus weighted anisotropic perimeter.

1. Introduction

This paper is based on a seminar given by the author at the Analysis and applications:
contribution from young researchers workshop that took place on 8,9 April 2019 in
Politecnico di Torino. The work presented here is part of an ongoing project in collab-
oration with Matthew Thorpe (see [24]).

In the modern era, people are producing a tremendous amount of data. Every
second there are 5 new Facebook profiles created, over 400 thousand tweets are sent on
Tweeter every minute, and more that 300 million of new pictures appear every day on
Facebook (see [42]). A first operation one has to do in order to make some use of these
collection of data, is to partition them in classes according to some notion of similarity.
Of course, this notion of similarity depends on the particular nature of the data, and on
the tasks that will be subsequently have to be performed on them. In practice, what we
have to do is to assign a label to each element of the data set, where each label repre-
sent a different class. There are three scenarios: when no information is known on the
labeling of the data set we talk about unsupervised learning, and of semi-supervised
learning when some labels are already know. Here we focus on the latter. The amount
of known labels we have to propagate to the whole data set affects the methods that
need to be implemented to reach the goal. The methods we are going to consider seem
to perform better, at least from a numerical point of view, than other methods used in
machine learning.

Among several methods proposed by many authors over the years, the ones
falling into the category of variational methods have been very successful. The gen-
eral idea is that the partition of the set of data in classes should satisfy some opti-
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mality condition. Thus, behind every variational method there is a functional that
has to be minimized. This functional will be defined on the set of possible labeling
of the data set, and the partition of the data set will be chosen among the labeling
that minimize the functional (in general, no uniqueness of the minimizer is guaran-
teed). Examples of such a variational methods for labeling that have been success-
fully implemented include minimizing graph cuts and total variation (see, for instance,
[6, 11, 15, 17, 16, 18, 43, 51, 54, 55, 53]).

Usually, each model posses some parameters that practitioners can vary in or-
der to obtain better results for each particular case where the method is applied (we
note that there are very few theoretical results connecting the role of the parameters to
the features of the partition one obtains by using that model). Some of the parameters
depend on the number of elements of the data set. Of capital importance for evaluat-
ing a labeling method is whether the method consistent or not; namely it is desirable
that the minimization procedure approaches some limit minimization method when the
number of elements of the data set goes to infinity. Due to the extremely large amount
of data usually considered in applications, this limiting operation is not just a merely
mathematical study. Moreover, knowing whether a specific minimization strategy is
an approximation of a limit (minimizing) object can help explain properties of the fi-
nite data method. In particular, this can also be used to justify, a posteriori, the use
of a certain procedure in order to obtain some desired features of the classification.
Furthermore, understanding the large data limits can open up new algorithms.

1.1. The structure of the data set

Assume that each element of the data set can be encoded into a point of a vector space
Rd . For instance, a point can represent a pixel of an image, or the whole image. The
construction of the points in the data set (sometimes called point cloud) is something
we are not interested in, but we assume we are given. A data set would then be a col-
lection of points Xn = {xi}n

i=1 ⊂ Rd . We refer to the example by Jeff Calder described
in Figure 1 as a justification for the need of the additional structure we will endow the
data set with.

In order to take into consideration the geometry of the data set, and to being
able to decide the relevance each element of the data set has with respect to the others,
we construct a graph over the data set Xn. The idea is the following: since we are using
a variational method, the underlining functional we have to minimize should penalize
a lot the case where elements of the data set we want to be in the same class, are given
different labels. Thus, the weight on each edge of the graph should represent the degree
of similarity of the two elements of the data set connected by the vertex. Again, we are
not interested in the specific way such a graph is constructed, but we briefly describe
the general method used to define the weights. Let xi, and x j be two points on the data
set. The weight W i j between them will depend on the points themselves, on features
we are interested in, and on how much we want to penalize the difference in these
features. From the mathematical point of view, we need a feature extraction function
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Figure 1: Assume we are only given labels on two points (top-left figure). Without any
knowledge on the data set, the best we can do is assign to each point the same label
to the one of the two pre-labeled points it is close to (top-right figure). Of course, for
certain geometry of the data set, this procedure might give a partition of the data set
(bottom-left figure) that is different from the expected one (bottom-right figure).

π : Rd ×Rd → R, and a feature penalization function ϕ : R→ [0,+∞). In this paper
we assume the feature extraction function π to be of the form

π(xi,x j) = π(xi− x j) ,

and such that suppπ⊂ BR(0), for some R > 0. Note that the feature extraction function
is anisotropic. The weight W i j between xi and x j is then defined as

W i j := ϕ(π(xi− x j)) =: η(xi− x j) .

Note that W i j = 0 means that we do not care about whether xi and x j have different
labels or not.

1.2. The discrete model

The discrete functional we consider will be introduced one term at a time, in order to
justify all the choices we make.

A first observation is the following. Since we are going to consider what hap-
pens when the number of points n of the data set goes to infinity, we expect the region
around each point in the data set to be more crowd as we increase n. This implies that
the number of edges each point in data set is connected to blows up with n. There are
two reasons we do not want this to happen: first of all, the problem would be unfeasi-
ble to treat from a numerical point of view (since sparse graphs are usually preferred).
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Figure 2: As the points of the data set get closer and closer to each other we want to
look at the local geometry of the data set.

Moreover, we want to localize the geometry in order for the partition to care about
the local structure of the data set (see the example in Figure 2). For these reasons, we
rescale the weights W i j as

W i j
n := ηεn(xi− x j) :=

1
εd

n
η

(
xi− x j

εn

)
,

where εn→ 0 as n→ ∞. Note that now W i j
n = 0 is |xi− x j| > εnR. The reader should

also note that, from an analytical point of view, ηn will play the role of a family of
mollifier. Hence, the first term of the functional would be

1
εnn2

n

∑
i, j=1

W i j
n |u(xi)−u(x j)|p ,

where p≥ 1. This term plays the role of penalising oscillations: intuitively one wants
a labeling solution such that if xi and x j are close on the graph then the labels are also
close. Moreover, the higher the weight W i j

n is, the more we penalise a labeling that put
xi and x j in different classes. When p = 2, can also be written as 1

εnn 〈u,Lu〉µn where L
is the graph Laplacian [52]. Finally, the rescaling 1

εn
has been chosen in order to get a

meaningful limiting functional.

Hereafter, for simplicity, we will consider only two classes, that we will denote
by ±1. All the stated results hold true, mutatis mutandi, also in the case more classes
are considered. From the numerical point of view, the hard classification problem is
difficult to treat. For this reason, it is convenient to relax the constrain of the labeling
to take value only in the classes ±1, and allow for a soft classification, i.e., for labeling
u : Xn→R. Of course, in the limiting model we would like to recover the hard labeling.
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Thus, we introduce a penalization for the labeling not to take value in the classes, as
follows:

1
εnn

n

∑
i=1

V (u(xi)) ,

where V : R→ [0,+∞) is such that V−1(0) = {±1}.
Finally, instead of asking a labeling u to match the given labels u, we penalise

it for not matching them via the term

λ
1
n

n

∑
i=1
|u(xi)−u(xi)|q1B(xi) ,

where λ > 0, q≥ 1, and B⊂ Rd is the set where we assume to have given the labels.

Thus, the discrete functional Gn : L1(Xn)→ [0,+∞] reads as

Gn(u) :=
1

εnn2

n

∑
i, j=1

W i j
n |u(xi)−u(x j)|p +

1
εnn

n

∑
i=1

V (u(xi))+λ
1
n

n

∑
i=1
|u(xi)−u(xi)|q1B(xi)

Here L1(Xn) is with respect to the empirical measure. Note that, since Xn is finite, every
labeling u : Xn→ R is in the domain of the functional Gn.

We note that the parameters of the discrete model are: the exponent p, the con-
stant λ, and the couple classes and potential V . A change in each of these parameters
will reflect in a change of the limiting functional, as well as in a change on the (prop-
erties of the) minimal partitions.

Before introducing the continuum model, we want to draw the attention with
the similarities between the functional Gn and models for phase transitions problems.
A well studied mathematical model for describing equilibrium configurations of a fluid
under isothermal conditions confined in a container Ω ⊂ RN and having two stable
phases (or a mixture of two immiscible and non-interacting fluids with two stable
phases) is the following

(1) Eε(u) :=
∫

Ω

[
1
ε

V (u)+ ε|∇u|2
]

dx .

Here u ∈ H1(Ω) is the phase variable, and ε > 0 is a small parameter related to the
thickness of the transition layer between the different phases. The zeros of the potential
V corresponds to the stable phases of the liquid. This model has been firstly derived by
Van der Waals in his pioneering work [59], and then rediscovered by Cahn and Hilliard
in [19]. It was conjectured by Gurtin (see [40]) that for 0 < ε� 1 the minimizer uε of
the energy Eε will approximate a piecewise constant function, u, taking values in the
zero set of the potential V , and minimizing the surface area of the interface separating
the two phases. This conjecture has been proved by Modica and Mortola in [45] (see
also [44]) by using the tools of Γ-convergence. Since then, the mathematical literature
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on the energy Eε and its variants has blossomed immensely. Here we just recall some
of the main classical papers on the subject. The vectorial case has been considered
by Kohn and Sternberg in [41], Fonseca and Tartar in [33] and Baldo [7]. A study of
the anisotropic case has been carried out by Bouchitté [9] and Owen [46] in the scalar
case, and by Barroso and Fonseca [8] and Fonseca and Popovici [32] in the vectorial
case. A general case has been considered by Ambrosio in [2], while solid-solid phase
transitions, when higher derivatives are considered in the energy have been the focus of
the works [21], and [22]. Several variants and extensions have been investigated by, for
instance, Savin and Valdinoci [50] and Esedoḡlu and Otto [30]. In particular, nonlocal
functionals have been used by Brezis, Bourgain and Mironescu in [10] to characterize
Sobolev spaces (see also the work [48] of Ponce). Approximations of (anisotropic)
perimeter functionals via energies defined in the discrete setting have been carried out
by Braides and Yip in [13] and by Chambolle, Giacomini and Lussardi in [20]. More
recently, the interaction between phase transitions and other physical phenomena like
homogenization has been the focus of the work of some authors. See, for instance
[4, 5, 14, 23, 27, 28].

A discrete non-local version of the energy Eε has been studied, in the context
of Ising spin systems on lattices, by Alberti and Bellettini in [1] and [1]. The non-local
energy they considered reads as

(2) Ẽε(u) :=
1

εd+1

∫
Ω

∫
Ω

J
(

y− x
ε

)
(u(y)−u(x))2 dxdy+

1
ε

∫
Ω

V (u(x))dx .

Here J is a non-negative kernel (ferromagnetic Kac potential) satisfying similar as-
sumptions as η. In their works, they were able to identify the Γ-limit of the family of
functionals Ẽ)ε, by introducing fundamental tools needed to study this class of prob-
lems. Indeed, different techniques have to be used in order to study the asymptotic
behaviours of the functionals (1) and (2).

The functional studied by Alberti and Bellettini is related to the functional we
are studying. Indeed, by using the results recalled in Section 2.1, it is possible to write
teh functional Gn as (apart from the fidelity term)

Gn(u) =
1
ε

∫
A×A

ηε(Tn(x)−Tn(z))|u(Tn(x))−u(Tn(z))|pρ(x)ρ(z)dxdz

+
1
ε

∫
A

V (u(Tn(x)))ρ(x)dx ,

for some maps Tn : Ω→ Xn. This writing brings to light the connection between our
model for labeling and the non-local model for phase transitions (2) studied by Alberti
and Bellettini. Indeed, as explained above, the rationale behind the choice of the energy
Gn is to view labeling of a data set as a problem of partitioning the data set into classes.
Therefore, apart from the passage from the discrete non-local model to the continuum
non-local model, from this last one we will be able to suitably adapt the techniques
introduced in [1].
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1.3. The continuum model

In order to define the limiting functional, we first need to introduce some notation.

DEFINITION 1. Let ν ∈ Rd . Define ν⊥ := {z ∈ Rd : z ·ν = 0}. Moreover, for
x ∈ Rd , set

C (x,ν) :=
{

C ⊂ ν
⊥ : C is a (d−1)-dimensional cube centred at x

}
.

For C ∈ C (x,ν), we denote by v1, . . . ,vd−1 its principal directions (where each vi is
a unit vector normal to the ith face of C), and we say that a function u : Rd → R is
C-periodic if u(y+ rvi) = u(y) for all y ∈ Rd , all r ∈ N and all i = 1, . . . ,d−1.

Finally, we consider the following space of functions:

U(C,ν) :=
{

u : Rd → [−1,1] : u is C-periodic, lim
y·ν→∞

u(y) = 1, and lim
y·ν→−∞

u(y) =−1
}
.

DEFINITION 2. Let p≥ 1 and X ⊂ Rd be open and bounded. Define the func-
tional G∞ : L1(X)→ [0,∞] by

G∞(u) :=



∫
∂∗{u=1}

σ(x,νu(x))ρ(x)dH d−1(x)+λ

∫
B
|u(x)−u(x)|qdx

if u ∈ BV (X ;{±1}) ,

+∞ else ,

where

σ(x,ν) := inf
{

1
H d−1(C)

G(u,ρ(x),TC) : C ∈ C (x,ν) ,u ∈U(C,ν)

}
,

and, for C∈ C (x,ν), we set TC := {z+ tν : z ∈C, t ∈ R}. Finally, for λ∈R and A⊂Rd

define

G(u,λ,A) := λ

∫
A

∫
Rd

η(h)|u(z+h)−u(z)|p dhdz+
∫

A
V (u(z))dz .

Here ∂∗{u = 1} denotes the reduced boundary of {u = 1} and νu(x) is the measure
theoritic exterior normal to the set {u = 1} at the point x ∈ ∂∗{u = 1} (see Definition
6).

REMARK 1. It is possible to see that the the function (x,ν) 7→ σ(x,ν) is upper
semi-continuous on X ×Sd−1, while, for every ν ∈ Sd−1, the function x 7→ σ(x,ν) is
continuous on X .

Notice that the discrete functional Gn is nonlocal while the functional G∞ is
local. The reason for this localization is because we rescaled the weights W i j

n . The
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minimization problem defining σ is called the cell problem and it is common in phase
transitions problems (see related works in Section ??). Although not explicit, we have
at least information on the form of the limiting functional: an anisotropic weighted
perimeter plus an Lq fidelity term.

1.4. Main results

In this section we state the main result proved in [24]. We refer to Section 2 for the
definitions. Let X ⊂Rd be a bounded, connected and open set with Lipschitz boundary.
Fix µ ∈ P (X) and assume the following.

(A1) µ� Ld , has a continuous density ρ : X → [c1,c2] for some 0 < c1 ≤ c2 < ∞.

We extend ρ to a function defined in the whole space Rd by setting ρ(x) := 0 for
x ∈ Rd \X . For all n ∈ N, consider a point cloud Xn = {xi}n

i=1 ⊂ X and let µn be the
associated empirical measure. Let {εn}∞

n=1 be a positive sequence converging to zero
and such that the following rate of convergence holds:

(A2)
dist∞(µn,µ)

εn
→ 0 .

The double well potential V : R→ R satisfies the following.

(B1) V is continuous.

(B2) V−1(0) = {±1} and V ≥ 0.

(B3) There exists τ > 0,RV > 1 such that for all |s| ≥ RV that V (s)≥ τ|s|.

(B4) V is Lipschitz continuous on [−1,1].

Recall that the graph weights are defined by W i j
n = ηεn(xi− x j). We assume that η :

Rd → [0,∞) is a measurable functions satisfying the following.

(C1) η≥ 0, η(0)> 0 and η is continuous at x = 0.

(C2) η is an even function, i.e. η(−x) = η(x).

(C3) η has support in B(0,Rη), for some Rη > 0.

(C4) For all δ > 0 there exists cδ,αδ such that if |x− z| ≤ δ then η(x) ≥ cδη(αδz),
furthermore cδ→ 1, αδ→ 1 as δ→ 0.

REMARK 2. We collect here the comments on the several hypothesis listed
above. The assumption 0 < c1 ≤ ρ ≤ c2 < +∞ is usually satisfied in practical ap-
plications: usually concentration phenomena happen on manifold, and thus the whole
problem can be stated directly on that manifold. Moreover, if ρ = 0 is some regions, it
is possible to neglect the set {ρ≤ δ}, for δ� 1. We note that these two conditions are
just technical, and do not affect any the limiting functional.
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When xi
iid∼ µ then (with probability one), hypothesis (A2) is implied by εn� δn,

where δn is defined in Theorem 2. Notice that for d ≥ 3 this lower bound on εn ensures
that the graph with vertices xn and edges weighted by W i j is eventually connected (see
[47, Theorem 13.2]). The lower bound can potentially be improved when xi are not
independent. For example if {xi}n

i=1 form a regular graph then µn converges to the
uniform measure and the lower bound is given by εn� n−

1
d .

Assumption (B3) is used to establish compactness, in particular it is used to
show that minimisers can be bounded in L∞ by 1. The prototypical example of a func-
tion V : Rd → R satisfying (B1-4) is given by V (s) := (s2−1)2.

Note that (C3) and (C4) imply that ‖η‖L∞ <∞ and, in particular,
∫
Rd η(x)|x|dx<

∞. Indeed, given δ> 0, it is possible to cover B(0,Rη) with a finite family B̃δ(x1), . . . , B̃δ(xr)

of sets of the form B̃δ(xi) := {αδz : |z− xi| < δ}. Hypothesis (C2) is justified by the
fact that η plays the role of an interaction potential. Finally, hypothesis (C4) is a ver-
sion of continuity of η we need in order to perform our technical computations. We
note that (C4) is general enough to include η(x) = χA where A⊂Rd is open, bounded,
convex and 0 ∈ A, see [58, Proposition 2.2].

The main result of the paper is the following.

THEOREM 1. Let p,q ≥ 1 and assume (A1-2), (B1-4) and (C1-4) are in force.
Let B ⊂ X be an open set with |B| > 0, and |∂B| = 0. Then, every sequence {un}∞

n=1,
with un ∈ L1(µn), such that

sup
n∈N

Gn(un)< ∞

is relatively compact in T L1, and each cluster point u ∈ L1(X ,µ) has G∞(u)< ∞.
Moreover, the sequence of functionals {Gn}n Γ-converges to the functional G∞

in the T L1 topology.

The above result ensure the consistency of the discrete model we are consider-
ing. Using well-known properties of Γ-convergence, it is possible to prove that cluster
points of minimizers of the discrete functionals Gn are minimizers of the limiting func-
tional G∞.

The functional Gn in the case p = 1 has been considered by Thorpe and Theil
in [58], where a similar Γ-convergence result has been proved. The difference is that,
in the case p = 1, the limit energy density function σ(1) can be given explicitly, via
an integral. In [60] van Gennip and Bertozzi studied the Ginzburg-Landau functional
on 4-regular graphs for d = 2 and p = 2 proving limits for ε→ 0 and n→ ∞ (both
simultaneously and independently).

The T Lp topology, as introduced by García Trillos and Slepčev [37], provides a
notion of convergence upon which the Γ-convergence framework can be applied. This
method has now been applied in many works, see, for instance, [37, 58, 38, 29, 26, 39,
34, 35, 53]. Further studies on this topology can be found in [37, 38, 56, 57].
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1.5. Future directions

The result presented in this paper is part of an ongoing project in collaboration with
Matthew Thorpe. We are currently studying the effect of non-locality and phase tran-
sition separately, namely when the rescaling of the weights is done with a parameter
δn that is different from the parameter εn used for the phase transition (rescaling of
the functional). Several regimes depending on limn→+∞

εn
δn

are considered. Moreover,
we want to understand whether the Γ-convergence of the energies can be used to infer
convergence of the solutions of the corresponding gradient flows.

Finally, we also aim at studying the consistency of variational models for the
classification of big data, where different operators on graphs, like the normalized
Laplacian, are used to define the discrete functional.

2. Background

We collect here the main definitions and results that will be needed in the paper.

2.1. Transportation theory

In this section we collect the fundamental material needed in order to explain how to
compare functions defined in different spaces, namely a function w ∈ L1(X ,µ) and a
function u ∈ L1(Xn,µn), where X ⊂ Rd is an open set, Xn = {xi}n

i=1 ⊂ X is a finite
set of points, and µn := 1

n ∑
n
i=1 δxi denotes the empirical measures relative to Xn. This

is fundamental in stating our Γ-convergence result (Theorem 1). The T Lp space was
introduced in [37] (see also [57]). For a general introduction on optimal transportation,
see [49, 61, 62]. Here the definitions we introduce tailored the special case we are
interested in.

DEFINITION 3. Let X ⊂ Rd be an open set, µ = ρLd be a probability measure
on X, and assume the density ρ is such that 0 < c1 ≤ ρ≤ c2 < ∞. For p ∈ [1,+∞), and
a positive Radon measure λ on X, we define the p-Wasserstein distance between µ and
λ as

distp(µ,λ) := inf
{
‖Id−T‖Lp(X ,µ) : T : X → X Borel, T#µ = λ

}
,

where
‖Id−T‖p

Lp(X ,µ) :=
∫

X
|x−T (x)|pρ(x)dx

and we define the push forward measure T#µ as T#µ(A) := µ
(
T−1(A)

)
for all A ⊂ X.

In the case p =+∞ we get

dist∞(µ,λ) = inf
{
‖Id−T‖L∞(X ,µ) : T : X → X Borel, T#µ = λ

}
,

where
‖Id−T‖L∞(X ,µ) := esssup

X
ρ(x)[x−T (x)].

A map T is called a transport map between µ and λ if T#µ = λ.
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REMARK 3. It is possible to see (see [61]) that the infimum is actually achieved.
Moreover, the metric distp is equivalent to the weak∗ convergence of probability mea-
sures plus convergence of pth moments.

Throughout the paper we will assume the empirical measures µn converges
weakly∗ to µ, so by Remark 3 there exists a sequence of Borel maps {Tn}∞

n=1 with
Tn : X → Xn and (Tn)#µ = µn such that

lim
n→∞
‖Id−Tn‖p

Lp(X ,µ) = 0 .

Such a sequence of functions {Tn}∞
n=1 will be called stagnating. We are now in position

to define the notion of convergence for sequences un ∈ Lp(Xn) to a continuum limit
u ∈ Lp(X ,µ).

DEFINITION 4. Let un ∈ Lp(Xn), w ∈ Lp(X ,µ) where Xn = {xi}n
i=1 and assume

that the empirical measure µn converges weak∗ to µ. We say that un → w in T Lp(X),

and we write un
TLp
−→w, if there exists a sequence of stagnating transport maps {Tn}∞

n=1
between µ and µn such that

(3) ‖vn−w‖Lp(X ,µ)→ 0 ,

as n→ ∞, where vn := un ◦Tn, and Tn is a sequence of stagnating maps.

The above definition of the T Lp convergence hides the underling metric struc-
ture. Since in the proof of the Γ-convergence result we want to exploit the metric struc-
ture of the T Lp spaces, we briefly describe them here. We define the T Lp(X) space as
the space of couplings (u,µ) where µ ∈ P (X) has finite pth moment and u ∈ Lp(µ). We
define the distance dT Lp : T Lp(X)×T Lp(X)→ [0,+∞) for p ∈ [1,+∞) by

dT Lp((u,µ),(v,λ)) := inf
T#µ=λ

(∫
X
|x−T (x)|p + |u(x)− v(T (x))|p dµ(x)

) 1
p

,

or for p =+∞ by

dT L∞((u,µ),(v,λ)) := inf
T#µ=λ

(
ess inf

µ
{|x−T (x)|+ |u(x)− v(T (x))| : x ∈ X}

)
.

We now state the relation between the T Lp-distance and the T Lp-convergence.
For a proof we refer to [37, Remark 3.4 and Proposition 3.12].

PROPOSITION 1. The distance dT Lp is a metric and furthermore,

dT Lp((un,µn),(u,µ))→ 0

if and only if µn
w*
⇀µ and there exists a sequence of stagnating transport maps {Tn}∞

n=1
between µ and µn such that ‖un ◦Tn−u‖Lp(X ,µ)→ 0.
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Finally, we state a rate of convergence for a sequence of stagnating maps proved
by García Trillos and Slepčev in [36] we will make use in the proof of the main result.

THEOREM 2. Let X ⊂Rd be a bounded, connected and open set with Lipschitz
boundary. Let µ := ρLd be a probability measure on X, with 0 < c1 ≤ ρ≤ c2 < ∞, and

let {xi}∞
i=1. Assume µn

w∗
⇀ µ, where µn is the empirical measure associated to {xi}∞

i=1.
Then, there exist a constant C > 0, and a sequence {Tn}∞

n=1 of maps Tn : X → X with
(Tn)#µ = µn and

limsup
n→∞

‖Tn− Id‖L∞(X)

δn
≤C ,

where

δn :=



√
log logn

n if d = 1 ,

(logn)
3
4√

n if d = 2 ,(
logn

n

) 1
d if d ≥ 3 .

2.2. Sets of finite perimeter

In this section we recall the definition and basic facts about sets of finite perimeter. We
refer the reader to [3] for more details.

DEFINITION 5. Let E ⊂ Rd with |E| < ∞ and let X ⊂ Rd be an open set. We
say that E has finite perimeter in X if

|DχE |(X) := sup
{∫

E
divϕdx : ϕ ∈C1

c (X ;Rd) , ‖ϕ‖L∞ ≤ 1
}
< ∞ .

REMARK 4. If E ⊂ Rd is a set of finite perimeter in X it is possible to define a
finite vector valued Radon measure DχE on A such that∫

Rd
ϕdDχE =

∫
E

divϕdx

for all ϕ ∈C1
c (X ;Rd).

DEFINITION 6. Let E ⊂ Rd be a set of finite perimeter in the open set X ⊂ Rd .
We define ∂∗E, the reduced boundary of E, as the set of points x ∈ Rd for which the
limit

νE(x) :=− lim
r→0

DχE(x+ rQ)

|DχE |(x+ rQ)
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exists and is such that |νE(x)| = 1. Here Q denotes the unit cube of Rd centered at
the origin with sides parallel to the coordinate axes. The vector νE(x) is called the
measure theoretic exterior normal to E at x.

We now recall the structure theorem for sets of finite perimeter due to De Giorgi,
see [3, Theorem 3.59] for a proof of the following theorem.

THEOREM 3. Let E ⊂Rd be a set with finite perimeter in the open set X ⊂Rd .
Then

(i) for all x ∈ ∂∗E the set Er := E−x
r converges locally in L1(Rd) as r→ 0 to the

halfspace orthogonal to νE(x) and not containing νE(x),

(ii) DχE = νE H d−1 ¬∂∗E,

(iii) the reduced boundary ∂∗E is H d−1-rectifiable, i.e., there exist Lipschitz functions
fi : Rd−1→ Rd such that

∂
∗E =

∞⋃
i=1

fi(Ki) ,

where each Ki ⊂ Rd−1 is a compact set.

REMARK 5. Using the above result it is possible to prove that (see [31])

νE(x) =− lim
r→0

DχE(x+ rQ)

rd−1

for all x∈ ∂∗E, where Q is a unit cube centred at 0 with sides parallel to the co-ordinate
axis.

Using the result [3, Theorem 3.42] and the fact that it is possible to approximate
every smooth surface with polyhedral sets, it is possible to obtain the following density
result.

THEOREM 4. Let E ⊂ Ω be a set of finite perimeter. Then there exists a se-
quence {En}∞

n=1 of sets of finite perimeter in Ω, such that ∂En is a Lipschitz manifold
contained in the union of finitely many affine hyperplanes, χEn→ χE , and |DχEn |(Ω)→
|DχE |(Ω).

Finally, we recall a result due to Reshetnvyak in the form we will need in this
paper (for a proof of the general case see, for instance, [3, Theorem 2.38]).

THEOREM 5. Let {En}∞
n=1 be a sequence of sets of finite perimeter in the open

set X ⊂ Rd such that DχEn
w∗
⇀ DχE and |DχEn |(X)→ |DχE |(X), where E is a set of

finite perimeter in X. Let f : X×Sd−1→ [0,∞) be an upper semi-continuous function.
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Then

limsup
n→∞

∫
∂∗En∩X

f (x,νEn(x)) dH d−1(x)≤
∫

∂∗E∩X
f (x,νE(x)) dH d−1(x) .

2.3. Γ-convergence

We recall the basic notions and properties of Γ-convergence (in metric spaces) we will
use in the paper (for a reference, see [12, 25]).

DEFINITION 7. Let (A,d) be a metric space. We say that Fn : A→ [−∞,+∞]

Γ-converges to F : A→ [−∞,+∞], and we write Fn
Γ-(d)−→F or F = Γ- lim(d)n→∞Fn, if

the following hold true:

(i) for every x ∈ A and every xn→ x we have F(x)≤ liminfn→∞ Fn(xn) ;

(ii) for every x ∈ A there exists {xn}∞
n=1 ⊂ A (the so called recovery sequence) with

xn→ x such that limsupn→∞ Fn(xn)≤ F(x) .

The notion of Γ-convergence has been designed in order for the following con-
vergence of minimisers and minima result to hold (see for example [12, 25]).

THEOREM 6. Let (A,d) be a metric space and let Fn
Γ−(d)−→ F, where Fn and F

are as in the above definition. Let {εn}∞
n=1 with εn→ 0+ as n→ ∞ and let xn ∈ A be

εn-minimizers for Fn, that is

(4) Fn(xn)≤max
{

inf
A

Fn +
1
εn

,− 1
εn

}
.

Then every cluster point of {xn}∞
n=1 is a minimizer of F.

3. The non-local continuum functional

Note that the fidelity term

λ
1
n

n

∑
i=1
|u(xi)−u(xi)|q1B(xi)

does not pose particular problems for Γ-convergence. Therefore, from now on, we will
consider the functionals Gn and G∞ with λ = 0.

We introduce here a non-local continuum functional that will be used as an
intermediate step in the proof of compactness and Γ-convergence.

DEFINITION 8. Let p≥ 1, ε > 0, sε > 0, and let A⊂ X be an open and bounded
set. Define the functional Fε(·,A) : L1(X)→ [0,∞] by

(5) Fε(u,A) =
sε

ε

∫
A×A

ηε(x− z)|u(x)−u(z)|pρ(x)ρ(z)dxdz+
1
ε

∫
A

V (u(x))ρ(x)dx .
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When A = X, we will simply write Fε(u).

Assume sε→ 1 as ε→ 0. The aim of this section is to prove the following result.

THEOREM 7. Let p ≥ 1, {εn}n∈N with εn → 0 as n→ ∞. Under conditions
(A1), (B1-3) and (C1-3) the following hold:

(i) Any un ∈ L1(X ,µ) satisfying

sup
n∈N

Fεn(un)< ∞

is relatively compact in L1(X ,µ), and each cluster point u∈L1(X ,µ) has G∞(u)<
∞;

(ii) The functional Fεn Γ-converges to G∞ in the L1 topology.

The proof of Theorem 7 is a careful adaptation of the techniques used in [1]
by Alberti and Bellettini, where the functional Fε in the case sε ≡ 1, p = 2 and ρ ≡ 1
is studied. From the technical point of view, the continuity of the density ρ together
with the bounds 0 < c1 ≤ ρ ≤ c2 < +∞ allows to locally treat it as a constant. A bit
more care has to be taken in the generalization from the exponent p = 2 to a general
exponent p > 1.

A fundamental technical tool provided in [1] is the control of the nonlocality

Λε(u,A,B) :=
sε

ε

∫
A

∫
B

ηε(x− z)|u(x)−u(z)|pρ(x)ρ(z)dxdz .

in terms of a suitable notion of traces at the boundary of the sets.

PROPOSITION 2. Let vn→ v in L1(X) with |vn| ≤ 1. Then, for all x̄ ∈ Rd and
for all ν ∈ Sd−1 the following holds: given C ∈ C (x̄,ν) consider the strip TC and any
cube Q⊂ Rd whose intersection with ν⊥ is C. Then, for a.e. t > 0:

(i) Λεn(vn, tTC,Rd \ tTC)→ 0 as n→ ∞,

(ii) Λεn(vn, tQ, tTC \ tQ)→ 0 as n→ ∞.

Another useful result we will make use of is the following continuity property
of σ proved in [24].

LEMMA 1. Under assumptions (A1) and (C3) the followings hold:

(i) the function (x,ν) 7→ σ(x,ν) is upper semi-continuous on X×Sd−1,

(ii) for every ν ∈ Sd−1, the function x 7→ σ(x,ν) is continuous on X.
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Proof of Theorem 7. Step 1: proof of (i). Let vn(x) := sign(un). It is possible to see
that

(6) ‖un− vn‖L1 → 0, sup
n∈N

Fεn(vn)<+∞.

Using (6), we conclude by noting that, since vn ∈ L1(X ;{±1}) we have

F (p)
εn (vn) = 2p−2snF (2)

εn (vn) ,

where we stressed the dependence on p of the functionals F (p)
εn . The result of Alberti

and Bellettini then gives the desired compactness. Moreover, it is not difficult to see
that G (2)

∞ (u)<+∞ implies G (p)
∞ (u)<+∞. Therefore, G∞(u)<+∞ for any cluser point

u ∈ L1(X ,µ) of {un}∞
n=1.

Step 2: proof of (ii) - liminf inequality. The proof of the liminf inequality is
based on the blow-up method (see [31]). In particular, it suffices to prove the following:
let x ∈ Ω, ν ∈ Sd−1, Q ⊂ Rd a unitary cube centered at the origin with two faces
orthogonal to ν. Take a sequence {un}n∈N ⊂ L1(Q) with un→ u in L1, where u(x) :=
sign(x ·ν), for x ∈ Q. Then we claim that

(7) lim
n→∞

Fεn(un,x+ rnQ)

rd−1
n

≥ σ(x,ν) ,

where rn→ 0. In order to avoid useless technicalities, we will now assume ρ≡ 1, and
just describe the main ideas of the proof.

Let C := Q∩ν(x)⊥ ∈ C (x,ν(x)), and let t ∈ (0,1). For x ∈Q, and r > 0, we set
Rx,ru(y) := u(x+ ry). Define the function wn : Rd →R as the periodic extension of the

function that is Rx,rn uεn in Q and vx in TC \Q. Set ε′n := εn
rn

and s′n = min
{

1, sεn
s
ε′n

}
. We

get

λεn(x+ rntQ)

rd−1
n

≥ Fεn(uεn ,x+ rntQ)

rd−1
n

≥ s′nFε′n(Rx,rn uεn , tQ)

= s′nFε′n(wn, tQ)

≥ s′nGε′n(wn,1,TC)

− s′n
∣∣Fε′n(wn, tQ)−Gε′n(wn,1, tTC)

∣∣
= s′n

(
εn

rn

)d−1

G
(

R0,ε′nwn,1,
rn

εn
tTC

)
− s′n

∣∣Fε′n(wn, tQ)−Gε′n(wn,1, tTC)
∣∣

≥ s′ntd−1
σ(x,ν)− s′n

∣∣Fε′n(wn, tQ)−Gε′n(wn,1, tTC)
∣∣ .(8)

Using Lemma 2, we get that, for a.e. t ∈ (0,1),

lim
n→∞

∣∣Fε′n(wn, tQ)−Gε′n(wn, tTC)
∣∣= 0 .
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Therefore, from (8), together with sε→ 1 as ε→ 0, we finally get (7).

Step 3: proof of (ii): limsup inequality. Using the upper semi-continuity of σ

(see Lemma 1) together with Theorem 5, it is possible to construct a recovery sequence
only for the class of polyhedral sets. We then conclude since this class is dense in the
family of sets of finite perimeter (see Theorem 4).

Consider a polyhedral set E, and let Σ one of its faces, with normal ν. We
will provide the construction of the recovery sequence only for the face Σ. We recall
that there are no regularity requirements for the recovery sequence, other than being in
L1. Fix δ > 0. By continuity of σ in the first variable (see Lemma 1) along with the
continuity of ρ, it is then possible to partition Σ in a finite number of (parts of) cubes
U1, . . . ,UNδ

each of side rδ, such that

(9)

∣∣∣∣∣
∫

Ui

σ(x,ν)ρ(x)dH d−1(x)− rd−1
δ

Nδ

∑
j=1

σ(xi,ν)ρ(xi)

∣∣∣∣∣< δ .

where xi ∈Ui. Fix i ∈ {1, . . . ,Nδ}, and let wi ∈U(Ui,ν) be such that

(10)
1

H d−1(Ci)
G(wi,ρ(xi),TCi)< σ(xi,ν)+

δ

ρ(xi)Nδrd−1
δ

.

Define the map vi
εn as the periodic extension to Ui of the rescaled map wi

(
x
εn

)
, and let

uεn(x) :=
Nδ

∑
i=1

vi
εn(x)1Ui(x) .

We claim that:

(i) For all i 6= j
lim
n→∞

Λεn(uεn ,Ui,U j)→ 0;

(ii) For all i = 1, . . . ,Nδ

limsup
n→∞

Fεn(uεn ,Ui)≤ G∞(u,Ui).

If the above claims hold true, then we can conclude as follows: we have

limsup
n→∞

Fεn(uεn)≤
Nδ

∑
i=1

limsup
n→∞

Fεn(uεn ,Ui)+2
Nδ

∑
i< j=0

limsup
n→∞

Λεn(uεn ,Ui,U j)

≤
Nδ

∑
i=1

G∞(u,Ui)

= G∞(u) .

Claim (i) follows from Proposition 2, since vi
εn → v as n→∞, where v(x) := sign(x ·ν).

On the other hand, the continuity of ρ together with (9) and (10), ensures the validity
of (ii).
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4. Proof of Theorem 1

We first prove a technical result that will be needed in what follows.

LEMMA 2. Let un → u in T L1(X). We claim that there exist αn,cn, α̂n, ĉn > 0
with αn,cn, α̂n, ĉn→ 1 such that

cnη

(
αn(x− z)

εn

)
≤ η

(
Tn(x)−Tn(z)

εn

)
≤ ĉnη

(
α̂n(x− z)

εn

)
.

Proof. Step 1: First inequality. Let δn := 2‖Tn−Id‖L∞

εn
. By Assumption (C4) we can find

αn,cn such that, for all a,b ∈ Rd with |a−b| ≤ δn, we have

(11) η(a)≥ cnη(αnb) .

Since by assumption (A2) we have that δn → 0 then αn,cn can be chosen such that
αn→ 1,cn→ 1. Now if we let a := Tn(x)−Tn(z)

εn
and b := x−z

εn
we have

|a−b|= |Tn(x)−Tn(z)+ z− x|
εn

≤ 2‖Tn− Id‖L∞

εn
= δn

and therefore, by (11), we get η

(
Tn(x)−Tn(z)

εn

)
≥ cnη

(
αn(x−z)

εn

)
as required.

Step 2: Second inequality. We use the following subclaim: for all δ̂ > 0 suffi-
ciently small there exists α̂

δ̂
, ĉ

δ̂
> 0 such that α̂

δ̂
→ 1, ĉ

δ̂
→ 1, as δ̂→ 0, and, for any

â, b̂ ∈ Rd , it holds

(12) |â− b̂|< δ̂ → ĉ
δ̂
η(α̂

δ̂
b̂)≥ η(â) .

Then the desired inequality can be obtained as follows: for any n ∈ N take

â :=
Tn(x)−Tn(z)

εn
, b̂ :=

x− z
εn

, δ̂ :=
2‖Tn− Id‖L∞

εn
,

and let α̂n, ĉn be the numbers given by the subclaim for which (12) holds. Note that α̂n
is chosen independently from wn (since wn depends on α̂n there is therefore no circular
argument). Then, since |â− b̂| ≤ δn, we conclude.

To prove the subclaim, we let αδ,cδ be as in Assumption (C4) and let δ̂ >
0. Without loss of generality we assume that infγ∈(0,1] αγ ∈ (0,∞). We choose δ :=

min
(

b1, δ̂

infs∈(0,1] αs

)
b, trivially δ→ 0 as δ̂→ 0. We assume that δ̂

infγ∈(0,1] αγ
≤ 1. Let

â, b̂ ∈ Rd with |â− b̂| < δ̂, and define a := â
αδ

and b := b̂
αδ

. Since, |a− b| ≤ δ̂

αδ
≤

δ̂

infγ∈(0,1] αγ
= δ then

η(b)≥ cδη(αδa) → 1
cδ

η

(
b̂

αδ

)
≥ η(â) .
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Let ĉ
δ̂

:= 1
cδ

, α̂
δ̂

:= 1/αδ then δ̂→ 0 implies δ→ 0 which in turn implies αδ,cδ → 1
and therefore α̂

δ̂
, ĉ

δ̂
→ 1. This proves the claim.

We are now in position to prove Theorem 1.

Step 1: Compactness. Let {un}∞
n=1 with un ∈ L1(Xn) be such that

sup
n∈N

Gn(un)<+∞ .

Let {Tn}∞
n=1 be the corresponding transport maps given by Theorem 2. Set vn := un◦Tn.

Then, using Lemma 2, we get

Gn(un) =
1

ε
d+1
n

∫
X

∫
X

η

(
Tn(x)−Tn(z)

εn

)
|vn(x)− vn(z)|pρ(x)ρ(z)dxdz

+
1
εn

∫
X

V (vn(x))ρ(x)dx

≥ cn

ε
d+1
n

∫
X

∫
X

η

(
αn(x− z)

εn

)
|vn(x)− vn(z)|pρ(x)ρ(z)dxdz

+
1
εn

∫
X

V (vn(x))ρ(x)dx

=
cn

α
d+1
n (ε′n)

d+1

∫
X

∫
X

η

(
x− z

ε′n

)
|vn(x)− vn(z)|pρ(x)ρ(z)dxdz

+
1
εn

∫
X

V (vn(x))ρ(x)dx

=
1

αn
Fε′n(vn)(13)

where ε′n := εn
αn

. Therefore, the compactness follows from Theorem 7.

Step 2: Liminf inequality. Let u ∈ L1(µ) and take un ∈ L1(µn) with un → u in
T L1. From Lemma 2, and using Theorem 7 we have

liminf
n→∞

Gn(un)≥ liminf
n→∞

ε′n
εn

Fε′n(vn)≥ G∞(u)

since limn→∞
ε′n
εn

= 1.

Step 3: Limsup inequality Using the density of polyhedral sets in the family of
sets of finite perimeter (Theorem 4), together with Theorem 5, it suffices to provide a
recovery sequence in the case ∂{u = 1} is a polyhedral set.

Let {wn}∞
n=1 ⊂ L1(X) be the recovery sequence provided by Theorem 7 such

that
wn→ u , in L1(X) , lim

n→∞
Fεn(wn) = G∞(u) .
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For each n ∈ N, set
un(xi) = n

∫
T−1

n (xi)
wn(x)dx ,

where Xn = {x1, . . . ,xn}.

Let ζn→ 0 with ζn�
√
‖Tn−Id‖L∞

εn
. A careful analysis of the way the recovery

sequence in Theorem 7 has been constructed, allows to choose {wn}∞
n=1 in such a way

that each wn is Lipschitz continuous with Lip(wn) =
1

ζεn εn
and uεn(x) = u(x) for all x

satisfying
dist(x,∂∗{u = 1})> εn

ζεn

.

Then, using the fact that wn→ u in L1(X), it is possible to show that

un→ u , in T L1 .

We now show that
limsup

n→∞

Gn(un)≤ G∞(u) .

For, write

Gn(un) =
1
εn

∫
X

∫
X

ηεn(Tn(x)−Tn(z))|vn(x)− vn(z)|pρ(x)ρ(z)dxdz+
1
εn

∫
X

V (vn(x))ρ(x)dx

≤ ĉn

α̂
d+1
n ε′n

∫
X

∫
X

ηε′n(x− z)|vn(x)− vn(z)|pρ(x)ρ(z)dxdz+
1
εn

∫
X

V (vn(x))ρ(x)dx

=
ĉn

α̂
d+1
n ε′n

∫
X

∫
X

ηε′n(x− z)|wn(x)−wn(z)|pρ(x)ρ(z)dxdz+
1
εn

∫
X

V (wn(x))ρ(x)dx

+an +bn

where we recall ε′n := εn
α̂n

and

an :=
ĉn

α̂
d+1
n ε′n

∫
X

∫
X

ηε′n(x− z)(|vn(x)− vn(z)|p−|wn(x)−wn(z)|p)ρ(x)ρ(z)dxdz ,

bn :=
1
εn

∫
X
(V (vn(x))−V (wn(x)))ρ(x)dx .

Using the fact that ‖wn−vn‖L1(X)→ 0 as n→∞, together with the fact that for all δ> 0
there exits Cδ > 0 such that for any a,b ∈ Rd we have

|a|p ≤ (1+δ)|b|p +Cδ|a−b|p ,

and
|a+b|p ≤ 2p−1 (|a|p + |b|p) ,

it is possible to show that an,bn→ 0 as n→ ∞. Therefore, we get

limsup
n→∞

Gn(un)≤ (1+δ)G∞(u) .

We conclude since δ > 0 is arbitrary.
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